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We present a theoretical approach to calculate the molecular magnetic anisotropy parameters, DM and EM for
single molecule magnets in any eigenstate of the exchange Hamiltonian, treating the anisotropy Hamiltonian as
a perturbation. Neglecting intersite dipolar interactions, we calculate molecular magnetic anisotropy in a given
total spin state from the known single-ion anisotropies of the transition metal centers. The method is applied to
Mn12Ac and Fe8 in their ground and first few excited eigenstates, as an illustration. We have also studied the
effect of orientation of local anisotropies on the molecular anisotropy in various eigenstates of the exchange
Hamiltonian. We find that, in case of Mn12Ac, the molecular anisotropy depends strongly on the orientation of
the local anisotropies and the spin of the state. The DM value of Mn12Ac is almost independent of the
orientation of the local anisotropy of the core Mn�IV� ions. In the case of Fe8, the dependence of molecular
anisotropy on the spin of the state in question is weaker. We have also calculated the anisotropy constants for
several sets of exchange parameters and found that in Mn12Ac the anisotropy increases with spin excitation
gap, while in Fe8, the anisotropy is almost independent of the gap.
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I. INTRODUCTION

Following the synthesis and the discovery of exotic prop-
erties such as quantum resonant tunneling �QRT� in the
single molecule magnet �SMM� Mn12Ac during the 1990s,
there has been a flurry of activity in the field of molecular
magnetism.1–4 This has led to the synthesis of new systems
such as Fe8, as well as to the observation of new phenomena
such as quantum coherence.5,6 SMMs are mainly high nucle-
arity transition metal complexes with a high spin ground
state �SGS�. They are also characterized by large uniaxial
magnetic anisotropy.7 The Hamiltonian corresponding to the
magnetic anisotropy of a molecular system can be written as

ĤD = ŜM · D�M� · ŜM , �1�

where ŜM is the spin operator for the total spin of the mol-
ecule and D�M� is the magnetic anisotropy tensor of the mol-
ecule. In usual practice, the anisotropy tensor is diagonalized
and the principal axis of the molecule would correspond to
the eigenvectors of the tensor. Since in most physical situa-
tions, the quantity of interest is the energy gaps between the
otherwise degenerate states split by the magnetic anisotropy,
the condition of zero trace is imposed on the D�M� tensor. If
DXX

M , DYY
M , and DZZ

M are the molecular anisotropies along the
three principal directions such that DXX

M +DYY
M +DZZ

M =0, we
can define two parameters, DM and EM, given by

DM = DZZ
M −

1

2
�DXX

M + DYY
M � ,

EM =
1

2
�DXX

M − DYY
M � ,

where DM and EM are called the axial and rhombic anisotro-
pies, respectively. This leads to the common form of the
magnetic anisotropy Hamiltonian of a SMM,

ĤM = DM�ŜZ
2 −

1

3
S�S + 1�� + EM�ŜX

2 − ŜY
2� . �2�

For the single molecule magnet to have nonzero magnetiza-
tion in the ground state, it is necessary that the anisotropy
constant DM in the spin Hamiltonian �Eq. �2�� of the complex
be negative; this ensures that the ground state of the system
then would correspond to the highest magnetization state of
the molecule, in its high spin ground state. This requirement
of negative DM, besides a high spin ground state, makes it
hard to tailor the SMMs. The second-order transverse or
rhombic anisotropy given by the last term in Eq. �2� allows
transition between states with spin S that differ in their Ms
values by two. EM will be zero if the SX

2 −SY
2 operator does

not remain invariant under symmetry of the molecule. In this
case higher-order spin-spin interaction terms are required to
observe the QRT. For example, the D2d symmetry in Mn12Ac
prohibits the existence of first-order rhombic anisotropy.
Thus, the parameters DM and EM govern the quantum tun-
neling properties of a SMM, and inputs from theoretical
modeling could help in designing the architecture for the
synthesis of SMMs.

Theoretical modeling of SMMs presents two difficulties.
First, the complexes contain many spin centers, and often
these centers have different spins as in the case of Mn12Ac,
where the four Mn�IV� ions have spin-3/2, while the eight
Mn�III� ions have spin-2. In these systems, usually there ex-
ist multiple exchange pathways between any given pair of
ions leading to uncertain magnitude and sign of the magnetic
interactions in the system. The topology of magnetic interac-
tions often results in magnetic frustration, leading to closely
spaced low-lying states of unpredictable total spin. Thus,
solving even the simple Heisenberg exchange Hamiltonian
of these systems turns out to be a challenge. If we do not
employ a spin adapted basis to set up the Hamiltonian ma-
trix, we could encounter convergence difficulties associated
with closely spaced eigenvalues even when the correspond-
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ing eigenstates belong to different total spin sectors. How-
ever, the assorted spin cluster, which a SMM is, renders con-
struction of spin adapted basis difficult. This problem has
been addressed by resorting to a valence-bond scheme for
construction of the spin adapted basis, and we are now in a
position to block diagonalize the Hamiltonian by exploiting
both spin and spatial symmetries.8 Thus, while the challenge
of accurately solving the exchange Hamiltonian of a large
assorted spin system with arbitrary topology of exchange
interactions is within grasp, the challenge of computing the
magnetic anisotropy constants of a SMM still remains.

The magnetic anisotropy in an isolated ion arises from
explicit dipolar interactions between the unpaired electrons
in the magnetic center, as well as from relativistic �spin-
orbit� interactions. The former is the main origin of zero-field
splitting observed in triplet states of conjugated organic mol-
ecules such as naphthalene.10 However, in systems contain-
ing heavier elements the relativistic effects dominate. In a
system with several magnetic centers such as a SMM, given
the spin and single-ion anisotropy of each magnetic center,
the magnetic anisotropy could arise both from dipolar inter-
actions between magnetic centers and relativistic effects. The
usual approach in these cases is to carry out simple tensoral
summation of the anisotropies of the constituent magnetic
centers to obtain the magnetic anisotropy in the SMMs along
the lines of an oriented gas model employed in the calcula-
tion of macroscopic nonlinear optic �NLO� coefficients from
isolated molecular NLO coefficients.11–13 Such an approach,
in the case of SMMs, suffers from the drawback that the
anisotropy constants so computed are independent of the to-
tal spin state of the molecule.

There have been several earlier works on the computation
of anisotropy tensor D�M� of SMMs.14–18 These approaches
are based on density-functional methods. The effective
mean-field Hamiltonian for the magnetic cluster is obtained
in the density functional theory �DFT� formalism with de-
sired Sz

total of the cluster. Besides, it is also ensured that the
individual magnetic centers have the observed local spin by
enforcing the z component of the ion to be equal to the
known spin of the ion. From the resulting potential ��r�, the

spin-orbit �SO� operator Ŝ · �p̂��� ��r��� is treated as a pertur-
bation in second order, and the anisotropy constants are ex-
tracted. This approach has some drawbacks. It is well known
that the DFT method does not conserve total spin and the
ground state has admixture of many spin states. Thus, it is
not guaranteed that the calculations are done on the Stotal

=10 ground state of the Mn12 cluster. Besides, the method
also does not guarantee that the spins on the local centers are
correctly conserved. While the DFT method may give the
correct local single-ion anisotropy, it is unlikely that the an-
isotropy of the full cluster will be obtained accurately as the
latter is determined by spin-spin correlations, and mean-field
theories do not give correct spin correlations. In the case of
single-ions, Neese and Solomon19 have restricted configura-
tion interaction approach, which appears to yield correct
single-ion anisotropy.

In the electron paramagnetic resonance �EPR� studies in-
volving a pair of high spin ions, a perturbation approach was
developed by Bencini and Gatteschi13 to obtain the aniso-

tropy of the total system, knowing the anisotropy constants
of two individual ions. This method is purely analytical since
they dealt with only two magnetic ions. In this paper, we
develop a general methodology to deal with large cluster of
ions with arbitrary spins in any given total spin state. We use
a spin-exchange Hamiltonian to describe the cluster, unlike
the all electron Hamiltonian that is employed in DFT studies.
We obtain desired exact eigenstates of the exchange Hamil-
tonian, using the magnetic anisotropic interactions as a per-
turbation, and compute the molecular anisotropy constants in
the desired eigenstates, in first-order perturbation. The input
parameters required in our study are the local single-ion
anisotropies and the exchange constants of the exchange
Hamiltonian. Our study can yield the anisotropy values for
different total spin states, as well as for different states with
the same total spin. In Sec. II we describe the method in
detail. In Sec. III we present the results of our studies on the
two SMMs, Mn12Ac and Fe8. In Sec. IV we summarize our
studies.

II. FORMULATION OF THE METHOD

We treat the exchange Hamiltonian between magnetic
centers in the SMMs as the unperturbed Hamiltonian,

Ĥ0 = �
�ij	

JijŜi · Ŝj , �3�

where �ij	 runs over all pairs of centers in the model for

which the exchange constant is nonzero and Ŝi is the spin on
the ith magnetic center. In SMMs, such as Mn12Ac, the spins
at all the magnetic centers are not the same and the exchange
interactions are shown in Fig. 1. H0 can be solved exactly for
a few low-lying states in a chosen spin sector by using meth-
ods that have been described in detail elsewhere.9

FIG. 1. �Color online� Schematic of possible exchange interac-
tions in Mn12Ac SMM. The peripheral ions are Mn�III� with spin-2
and the interior ions are Mn�IV� with spin-3/2. Js are the strength of
superexchange interaction with J1=215 K, J2=J3=85.6 K, and
J4=−64.5 K �Ref. 9�.
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The general anisotropic interactions in a collection of
magnetic centers is treated as a perturbation with Hamil-

tonian Ĥ1� given by

Ĥ1� =
1

2�
i

�
j

�
�

�
�

Dij,��Ŝi
�Ŝj

�, �4�

where the indices i and j run over all the magnetic centers,
and � and � run over x, y, and z directions of the ion. The
contributions to intercenter anisotropy constant arise due to
dipolar interaction between the spins on the two centers, as
well as due to relativistic effects. In the former, Dij,�� is
given by

Dij,�� =
1

2
g2�B

2
Rij
2 ��� − 3Rij,�Rij,�

Rij
5 � , �5�

where Rij�Rij� is the vector �distance� between the magnetic
centers i and j, g is the gyromagnetic ratio, and �B is the
electronic Bohr magneton; the expectation value in Eq. �5� is
obtained by integration over spatial coordinates.20 Approxi-
mating the expectation values of the distances by the equi-
librium distances, Dij,�� in Eq. �5� and computing the neces-
sary spin-spin correlation functions, we can obtain the
molecular D��

�M� tensor.21 The eigenvalues of this matrix give
the principal anisotropy values, and imposing the condition
of zero trace of the matrix yields molecular magnetic aniso-
tropy constants due to spin-spin interactions. Our computa-
tion of the magnetic anisotropy constants, assuming only
spin-dipolar interactions for the SMMs Mn12Ac and Fe8,
gives negligible values of the anisotropy constants compared
to the experimental values of DM =−0.7 and −0.28 K, re-
spectively, in the S=10 ground state.22,23 Hence in what fol-
lows, we completely neglect the contribution of spin-dipolar
interactions and focus only on the magnetic anisotropy of the
SMMs arising from the anisotropy of individual magnetic
centers. The latter is a consequence of mainly spin-orbit in-
teractions. We now assume that the interactions responsible
for magnetic anisotropy are short ranged, and we neglect
intercenter contributions to magnetic anisotropy in Eq. �4�.
This is justified since relativistic �spin-orbit� interactions,
largely responsible for the anisotropy, is short ranged �falling
off as 1 /r3� and the distances between the magnetic centers
is much larger compared to the ionic radius of the transition
metal ion. The resulting perturbation term is given by

Ĥ1 = �
i

�
�

�
�

Di,��Ŝi
�Ŝi

�, �6�

where only on-site terms are retained. If the individual mag-
netic centers have different principal axes, then we choose a
laboratory frame and project the local tensor components on
to the laboratory frame. In such a case, Eq. �6� is modified to

Ĥ1 = �
i

�
�

�
�

�
l

�
m

Ci,l�Ci,m�Di,��Ŝi
�Ŝi

�, �7�

where Ci,l� are the direction cosines of the local axis of the
ith magnetic center with the l�m� being the coordinate of the
laboratory frame and ���� being the local coordinates. Since
the Hamiltonians in Eqs. �1� and �7� are equivalent, we can

equate the matrix elements �n ,SM ,M�Ĥ1�n ,SM ,M�	 and

�SM ,M�ĤM�SM ,M�	 for any pair of eigenstates of the ex-
change Hamiltonian in Eq. �3�; �M	 and �M�	 correspond to a
state n with spin SM in which we are interested. Calculating

these matrix elements for ĤM is straightforward from the
algebra of spin operators. However, evaluation of these ma-

trix elements between eigenstates of Ĥ0 requires a computa-
tion in the basis of the spin orientation of the sites. From a

given eigenstate of Ĥ0 , �n ,S ,M	, we can compute all eigen-
states with different M values by using ladder operators cor-
responding to spin S. Given a S value, the above condition
would give rise to �2S+1�2 equations, while the tensor D�M�

has only nine components. Thus, for the Mn12Ac system,
with ground-state spin of 10, there would be 441 equations,
and we will have more equations than unknowns. However,
we could take any nine equations and solve for the compo-
nents of the tensor D�M�, and we would get unique values of
the components. This is guaranteed by the Wigner-Eckart
theorem, and we have also verified this by solving for the
D�M� tensor from several arbitrarily different selections of the
nine equations.

III. RESULTS AND DISCUSSION

We have computed DM and EM values for both Mn12Ac
and Fe8 systems for different orientations of local anisotropy.

FIG. 2. �Color online� Schematic of local �x, y, and z� and
laboratory �X, Y, and Z� coordinate axes in Mn12Ac. The Mn�III�
�spin-2�, Mn�IV� �spin-3/2� and oxygen ions are marked in the fig-
ure. The arrows indicate the Mn-O bonds on which the chosen local
x axis has maximum projection.

FIG. 3. �Color online� Schematic diagram showing the direc-
tions of local anisotropy in Mn12Ac. The single-ion anisotropies of
all the Mn ions are directed along the laboratory Z axis �scheme 1�.
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We have used the single-ion anisotropy values quoted in the
literature for complexes of these ions in similar ligand
environments.24–27 While discussing the results, we refer to
the local axes of the ions as x, y, and z, and the laboratory
axes are denoted as X, Y, and Z �see Fig. 2�. The laboratory
frame we choose can be arbitrary. This is because, on deter-
mining D�M� in the laboratory frame, we diagonalize it and
the principal axis of the molecule is given by the eigenvec-
tors of the D�M� matrix. The principal axes of the molecule
are unique and do not depend on the laboratory frame that is
selected. We have computed the anisotropy parameters for
both these systems as a function of the angle �, which the z
axis of the ion makes with the laboratory Z axis. The orien-
tation of z component of the single-ion anisotropy in every
site is shown in Figs. 3–5 �schemes 1, 2, and 3� for Mn12Ac
and in Figs. 9–11 �schemes 4, 5, and 6� for Fe8 systems,
respectively. Once the z axis �z�� of the ion is fixed, then x� is
obtained by Gram-Schmidt orthogonalization procedure. Al-
though the choice of this vector is arbitrary in a plane per-
pendicular to z axis, we have fixed the direction of x� such as
to have maximum projection along a M-O �M =Mn,Fe�
bond in Mn12Ac as well as in Fe8 �s. 2 and 11�. If O� is the
vector connecting a M site and a neighboring O ion, then we
obtain x� from

x� = O� − �O� · z��z� . �8�

Then, the y axis of the ion is obtained by taking the cross
product of z� and x�, y� =z��x�. These three mutually orthogonal
vectors are then normalized to obtain the orthonormal set of
coordinate axes x, y, and z of the ion center. The single-ion
local axes are represented in the laboratory frame as

x = Ci,XxX + Ci,YxY + Ci,ZxZ ,

y = Ci,XyX + Ci,YyY + Ci,ZyZ ,

z = Ci,XzX + Ci,YzY + Ci,ZzZ , �9�

where the Cs are the direction cosines of Eq. �7� and the
index i correspond to the site i. The procedure is repeated for

TABLE I. DM values of ground and excited states of Mn12Ac
under various schemes in Kelvin. For scheme 2, we have presented
the DM values only for �17° for which the DM value of the
ground state matches with the experimentally observed value.

DM �K�
State Scheme 1 Scheme 2 Scheme 3

Ground state �S=10� −0.8138 −0.7083 0.4075

First excited state −0.6722 −0.6105 0.3449

�S=9� Eg=35.1 K

Second excited state −0.5009 −0.4264 0.2464

�S=8� Eg=60.4 K

FIG. 4. �Color online� Schematic diagram showing the direc-
tions of local anisotropy in Mn12Ac. The z component of the single-
ion anisotropies of all the Mn�III� ions are inclined at an angle � to
the laboratory Z, while that of the Mn�IV� ions are kept fixed at
48° �scheme 2�.

FIG. 5. �Color online� Schematic diagram showing the direc-
tions of local anisotropy in Mn12Ac. The z component of the single-
ion anisotropies of all the Mn ions are directed along the plane
perpendicular to the laboratory Z axis �scheme 3�.
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FIG. 6. �Color online� Variation of DM as a function of �, the
angle the z component of local anisotropy of Mn�III� ions makes
with the laboratory Z axis in eigenstates with total spin 10, 9, and 8.
The orientation of Mn�IV� ions is kept fixed at 48° from the
molecular Z axis. The curve with filled circles correspond to the
variation of DM when the local anisotropies of the core Mn�IV� ions
only are rotated and those of Mn�III� ions are fixed along the Z axis.
The variation of DM with � follows the equation DM�S�
=DM

0 �S��3 cos2 �−1�, with all DM
0 �10�=−0.40, DM

0 �9�=−0.34, and
DM

0 �8�=−0.25. Schemes 1, 2, and 3 correspond to �=0°, 17°, and
90°. Best fit for the experimental DM value in the Stotal=10 state
corresponds to �17°.
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every magnetic ion to obtain coordinate axes set, x, y, and z,
and the direction cosines in each case. We have obtained the
magnetic anisotropy parameters DM and EM for Mn12Ac and
Fe8 clusters as a function of the angle of rotation of the local
z axis with respect to the laboratory Z axis. In the following
subsections, we discuss the results for the two clusters.

A. Magnetic anisotropy in Mn12Ac SMM

We have first obtained the ground state and few excited
states of the Mn12Ac system by exactly solving the unper-
turbed Hamiltonian given in Eq. �3�, using the exchange in-
teractions shown in Fig. 1.9 The ground state of the system
corresponds to total spin 10 with a total spin 9 excited state
at 35.1 K from the ground state. The second excited state
occurs at 60.4 K from the ground state and corresponds to
total spin 8. To obtain the molecular anisotropy values in
these eigenstates, we have used different single-ion axial an-
isotropy values of −5.35 and 1.226 K, respectively, for
Mn�III� and Mn�IV� ions. We have also introduced trans-
verse anisotropy of 0.022 and 0.043 K for Mn�III� and
Mn�IV� sites, respectively. We have studied the variation of
molecular anisotropy as a function of orientation of the local
anisotropies by rotating the local D tensor around the mo-
lecular Z axis. Scheme 1 shown in Fig. 3 corresponds to the

case when all the single-ion z axes are pointed parallel to the
laboratory Z direction. In scheme 2 �Fig. 5�, we have fixed
the orientation of the local anisotropies of the core Mn�IV�
ions along the line joining the ion and the molecular center
�48° from the laboratory Z axis�, while the anisotropies of
the Mn�III� ions is rotated and the angle, which it makes with
the molecular Z axis, is defined as � �refer to Fig. 4�. The
orientation of the local anisotropy of Mn�III� ions, for which
we get the best agreement with experiments, corresponds to
�17°. In scheme 3 �Fig. 5�, we have restricted the z com-
ponent of single-ion anisotropy to the laboratory X-Y plane.
We have studied the variation in the molecular anisotropies
in these schemes for the ground and the excited eigenstates.
We show in Table I, the DM values for the ground and the
excited spin states of the molecule for schemes 1, 2, and 3.
We note that when the local anisotropies are systematically
varied, there is a very large variation in the molecular aniso-
tropy as a function of the local orientation �Fig. 6�. This
seems to be true for all the states of Mn12Ac that we have
studied. We note that given the orientations of local anisotro-
pies, the actual molecular anisotropy values are different in
different spin eigenstates. This may be rationalized from the
fact that the energy gaps between the ground and the excited
states are large, as a consequence of which the spin correla-
tions in these states are very different. We also note that in all
cases, from the eigenvectors of the D�M� matrix, we find that
the choice of our laboratory frame is very close to the prin-
cipal axis of the molecular system.

TABLE II. Energy gaps ��� and D0 values for the S=10 ground state corresponding to different sets of
parameter values in Mn12Ac.

S. No.
J1

�K�
J2

�K�
J3

�K�
J4

�K�
�

�K�
D0

�K�

1 215 85 85 −64.5 35.1 −0.40

2 215 85 85 −85 67.0 −0.43

3 215 85 64.5 −64.5 72.7 −0.46

4 215 85 45 −45 80.0 −0.49

5 215 85 −85 −45 224 −0.58
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FIG. 7. �Color online� Variation of �DM
0 � as a function of energy

gap �� in Kelvin� for the Stotal=10 ground state of Mn12Ac for
parameters listed in Table II, DM��� is given by −�DM

0 ��3 cos2 �
−1�.

FIG. 8. �Color online� Schematic of exchange interactions in Fe8

SMM. Js are the strength of superexchange interaction with
J1=150 K, J2=25 K, J3=30 K, and J4=50 K �Ref. 9�.
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We also examined the role of magnetic orientations of the
core Mn�IV� ions �s=3 /2� and the crown Mn�III� ions �s
=2� in determining the molecular anisotropies by fixing the
single-ion orientation of the crown Mn�III� ions at 0° and
rotating only the orientation of the core Mn�IV� ions system-
atically. The variation of DM for the S=10 ground state as a
function of rotation of the local anisotropies of the core
Mn�IV� ions is shown in Fig. 6. We find that the molecular
anisotropy is not sensitive to the local orientations of the
core Mn�IV� ions, while the orientation of the crown Mn�III�
ions control the variation of the molecular magnetic aniso-
tropy in Mn12Ac. It should be noted that, in the case of
Mn12Ac, EM vanishes by virtue of the D2d point group sym-
metry to which the molecule belongs. To study the variation
of DM

0 with the exchange parameters of the unperturbed
Hamiltonian, we explored five different sets of exchange
constants.9 In each case, the ground state has spin Stotal=10,
but the gap to the lowest excited spin state varies �Table II�.
The lowest excited spin state has Stotal=9 in all cases. We see
that there is an increase in �DM

0 � with increasing gap. The
variation of �DM

0 � with spin gap is shown in Fig. 7. We note
that the magnitude of anisotropy nonuniformly increases
with the gap.

B. Magnetic anisotropy in Fe8 SMM

We have also computed the values of molecular aniso-
tropy for the Fe8 molecular magnet. The unperturbed Hamil-
tonian in Eq. �3� is exactly solved using exchange param-
eters, J1=150 K, J2=25 K, J3=30 K, and J4=50 K �Fig.
8�.9 The ground state of the system corresponds to total spin
S=10 with a S=9 state at 13.56 K, a S=9 state at 27.28 K,
and a S=8 state at 28.33 K above the ground state. To cal-
culate the magnetic anisotropy of Fe8, we have taken the

single-ion axial and rhombic anisotropy values for Fe�III�
centers to be 1.96 and 0.008 K, respectively. Using these, we
have computed the molecular anisotropy values for three
schemes �schemes 4, 5, and 6� shown in Figs. 9–11. Scheme
4 corresponds to the case wherein the single-ion anisotropy
of all the Fe�III� ions are pointed along the laboratory Z
direction. In scheme 5, the anisotropies of the Fe�III� ions are
inclined at an angle � to the laboratory Z axis �refer to Fig.
10�. In scheme 6, we have restricted the z component of
single-ion anisotropy to the laboratory X-Y plane. We have
studied the variation in the molecular anisotropies as a func-
tion of orientation of local anisotropy in these schemes for
ground and the excited eigenstates �Fig. 12�. We show in
Table III the DM values for the ground and the excited spin
states of the molecule for schemes 4, 5, and 6. We note that

FIG. 9. �Color online� Schematic diagram showing the direc-
tions of local anisotropy in Fe8. The single-ion anisotropies of all
the Fe�III� ions are directed along the laboratory Z axis �scheme 4�.

FIG. 10. �Color online� Schematic diagram showing the direc-
tions of local anisotropy in Fe8. The z component of the single-ion
anisotropies of all the Fe�III� ions are inclined at an angle � to the
laboratory Z axis �scheme 5�.

FIG. 11. �Color online� Schematic diagram showing the direc-
tions of local anisotropy in Fe8. The z component of the single-ion
anisotropies of all the Fe�III� ions are directed along the plane per-
pendicular to the laboratory Z axis �scheme 6�. The arrows indicate
the Fe-O bonds on which the chosen local x axis has maximum
projection.
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FIG. 12. �Color online� Variation of DM in Fe8 cluster as a
function of �, the angle the z component of local anisotropy of
Fe�III� ions makes with the laboratory Z axis. All the plots can be
fitted to DM

0 �S��3 cos2 �−1�, with DM
0 �10�=0.3, DM

0 �9�=0.29, and
DM

0 �8�=0.275. DM
0 �S� is almost independent of S. Best fit for

the experimental DM value in the Stotal=10 state corresponds to
�82°.
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when the local anisotropies are systematically varied, there is
a very large variation in the molecular anisotropy as a func-
tion of the local orientation �Fig. 12�, similar to Mn12Ac, in
all the eigenstates that we have studied. We also note that
given the orientations of local anisotropies, the actual mo-
lecular anisotropy values are not very different in different
spin eigenstates since the energy gaps between the ground
and the excited states are small and since the spin correla-
tions in these states are not significantly different. The orien-
tation of the local anisotropy centers, for which we get the
best agreement with experiments �DM =−0.28 K�, corre-
sponds to �82°.26,27 As with Mn12Ac, we find that the
laboratory frame we have chosen is very close to molecular
axis in all the cases. In case of Fe8 cluster, the D2 symmetry
commutes with the Hamiltonian in Eq. �2� and allows for a
nonzero EM term. The variation of EM as a function of � is
shown in Fig. 13. The value of EM, for which DM has the
best fit, is 0.017 K compared to the experimental estimate of
0.046 K obtained from high-frequency EPR measurements.23

In this case also, we have explored the variation of DM
0 with

the exchange constants in the unperturbed Hamiltonian �Eq.
�3��.9 Unlike with Mn12Ac, we find that DM

0 is almost inde-
pendent of the excitation gap of the exchange Hamiltonian
�Table IV�.

IV. CONCLUSIONS

In this paper we presented a general method to calculate
the molecular magnetic anisotropy parameters, DM and EM,

for single molecule magnets in a chosen eigenstate of the
exchange Hamiltonian. Since anisotropy is generally weak in
SMMs compared to exchange interaction, we treat the aniso-
tropy Hamiltonian as a perturbation over the exchange
Hamiltonian. Calculation of DM and EM values, assuming
only dipolar interactions between the transition metal ions,
gives negligible values of molecular magnetic anisotropy
compared to the experimental values. Therefore, we focus on
the molecular anisotropy from the single-ion anisotropies of
the individual transition metal centers in the SMM. The
single-ion anisotropy has relativistic origin �spin-orbit inter-
actions generally dominate over dipolar interactions between
unpaired electrons in case of transition metal ions� and are
hence short ranged with inverse cube dependence on dis-
tance. Therefore, we neglect interaction between spin mo-
ment on one ion with the orbital moment on another. This
approximation simplifies the perturbation Hamiltonian. The
molecular anisotropies are computed from the single-ion
anisotropies using first-order perturbation theory for different
spin states of the SMMs. We have computed the molecular
magnetic anisotropy parameters of Mn12Ac and Fe8 SMMs
in various eigenstates of different total spin. We also studied
the variation of molecular anisotropy by rotating the local
anisotropy of the metal ions. In case of Mn12Ac, we find that
the molecular anisotropy changes drastically with the local
anisotropy direction. The DM value we have computed is
different in ground and excited states, owing to a large dif-
ference in spin-spin correlation values. The molecular aniso-
tropy of Mn12Ac does not change significantly with the ori-
entation of the local anisotropy of the core Mn�IV� ions. In
the case of Fe8 cluster also, we find that the molecular an-

TABLE III. DM values of ground and excited states of Fe8 under
schemes 4, 5, and 6 in Kelvin. For scheme 5, we have presented the
DM values only for �=82.2° for which the DM value of the ground
state matches with the experimentally observed value.

DM �K�
State Scheme 4 Scheme 5 Scheme 6

Ground state �S=10� 0.6030 −0.2867 −0.3033

First excited state 0.5821 −0.2763 −0.2923

�S=9� Eg=13.56 K

Second excited state 0.5877 −0.2790 −0.2952

�S=9� Eg=27.28 K

Third excited state 0.5503 −0.2607 −0.2758

�S=8� Eg=28.33 K

TABLE IV. Energy gaps ��� and D0 values for the S=10 ground state corresponding to different sets of
parameter values in Fe8.

S. No.
J1

�K�
J2

�K�
J3

�K�
J4

�K�
�

�K�
D0

�K�

1 180 153 22.5 52.5 5.87 0.30

2 150 25 30 50 13.56 0.30

3 195 30 52.5 22.5 41.40 0.30

4 201 36.2 58.3 26.1 42.5 0.30

0 30 60 90 120 150 180
θ (degree)
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FIG. 13. �Color online� Variation of EM in Fe8 cluster as a
function of �, the angle the z component of local anisotropy of
Fe�III� ions makes with the laboratory Z axis for scheme 5.
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isotropy parameters depend strongly on the orientation of the
local anisotropy. DM value is not very different in ground and
excited states probably due to small energy gaps, which im-
plies similar spin-spin correlations. Finally, we have com-
puted the anisotropy constants for different choices of the
exchange constants of the exchange Hamiltonian corre-
sponding to different spin excitation gaps. We find that in
Mn12Ac, the anisotropy constants increase significantly with
the gap, while in Fe8 they are almost independent of the gap.

In case of Mn12Ac, the first-order rhombic anisotropy
term is zero due to the D2d symmetry of the molecule, while
it is nonzero in Fe8. The second-order rhombic anisotropy
terms commute with the molecular symmetry of the Mn12Ac

cluster and cause tunneling between the states on either side
of the double potential well. Our method can also be ex-
tended to the calculation of higher-order anisotropy con-
stants.
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